Filtered Legendre expansion method for numerical differentiation at the boundary point with application to blood glucose predictions
نویسندگان
چکیده
Let f : [−1, 1] → R be continuously differentiable. We consider the question of approximating f (1) from given data of the form (tj , f(tj)) M j=1 where the points tj are in the interval [−1, 1]. It is well known that the question is ill–posed, and there is very little literature on the subject known to us. We consider a summability operator using Legendre expansions, together with high order quadrature formulas based on the points tj ’s to achieve the approximation. We also estimate the effect of noise on our approximation. The error estimates, both with or without noise, improve upon those in the existing literature, and appear to be unimprovable. The results are applied to the problem of short term prediction of blood glucose concentration, yielding better results than other comparable methods.
منابع مشابه
A numerical technique for solving a class of 2D variational problems using Legendre spectral method
An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...
متن کاملAPPLICATION OF THE SINGULAR BOUNDARY VALUE PROBLEM FOR INVESTIGATION OF PISTON DYNAMICS UNDER POLYTROPIC EXPANSION PROCESS
In this paper a mathematical simulation of a simplified internal combustion engine is presented. To contribute engine kinematics and its geometry, simple relations are derived for constrained motions. The equation of motion for the piston forms a singular boundary value problem. The uniqueness of the solution was studied in the Banach space. For solving governing equations an iterative numerica...
متن کاملApplication of Legendre operational matrix to solution of two dimensional nonlinear Volterra integro-differential equation
In this article, we apply the operational matrix to find the numerical solution of two- dimensional nonlinear Volterra integro-differential equation (2DNVIDE). Form this prospect, two-dimensional shifted Legendre functions (2DSLFs) has been presented for integration, product as well as differentiation. This method converts 2DNVIDE to an algebraic system of equations, so the numerical solution o...
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 224 شماره
صفحات -
تاریخ انتشار 2013